Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Journal of Dental Rehabilitation and Applied Science ; : 260-269, 2019.
Article in Korean | WPRIM | ID: wpr-914917

ABSTRACT

The prolonged neglect of the posterior teeth missing area may cause mesial drift, extrusion, unexpected movement of the adjacent teeth and alveolar bone loss with occlusion collapse. Therefore it is recommended to treat that area by the prosthesis as soon as possible after tooth missing. However, if orthodontic treatment is applied to move the remained teeth, it can create improved biomechanical dentoalveolar environment. The use of the third molars in teeth missing area provides advantages as optimizing of prosthesis size. However, crown shape, location, soundness of the third molar and possible of eruption failure should be considered. In this case report, two patients closed a second teeth missing site and reduced the size of the first and second teeth missing area for an implant by protraction of impacted third molars. This case reports the considerations for closing or reducing the posterior teeth space with protracting the third molars by comparing two patients.

2.
Korean Journal of Dental Materials ; (4): 43-52, 2019.
Article in Korean | WPRIM | ID: wpr-750277

ABSTRACT

The aim of this study was to examine the bioactivity and osseointegration of Ti-6Al-4V alloy implant which was modified by an anodic oxidation and a cyclic precalcification treatments. After blasting treatment using HAp (Hydroxyapatitie; HAp) powder which is resorbable blasting media (RBM) on the surface of Ti-6Al-4V alloy implants, the anodic oxidation treatment and the cyclic precalcification treatment were conducted to form nanotube TiO2 layer and HAp precipitation respectively. The surface morphology of the surface-treated Ti-6Al-4V alloy implant was investigated after immersion in the simulated body fluid(SBF) for 3 days to investigate the bioactivity. To investigate the effect of surface treatment on bonding between the implant and bone, RBM treated implant and RBM-anodization-cyclic precalcification(RACP) treated implant were placed on the distal side of both tibia diaphysis of rats, and then the removal torque of the implant was measured after 4 weeks. On the surface of RACP treated group, bone-like apatite precipitation was observed after immersion in SBF for 3 days. The removal torque was significantly higher in the RACP treated group than in the RBM treated group. The interfacial fracture between the implant and the new bone was observed in the RBM treated group, but both the cohesive fracture at the new bone and the interfacial fractures between the implant and the new bone were observed in the RACP treated group.


Subject(s)
Animals , Rats , Alloys , Diaphyses , Immersion , Nanotubes , Osseointegration , Tibia , Torque
3.
Korean Journal of Dental Materials ; (4): 243-256, 2018.
Article in Korean | WPRIM | ID: wpr-759673

ABSTRACT

The purpose of this study was to investigate the effects of the anodization and cyclic calcification treatment on the surface characteristic and bioactivity of the titanium thin sheet in order to obtain basic data for the production of bioactive titanium membrane. A 30×20×0.08 mm titanium sheets were prepared, and then they were pickled for 10 seconds in the solution which was mixed with HNO₃: HF: H₂O in a ratio of 12: 7: 81. The TiO₂ nanotube layer was formed to increase the specific surface area of the titanium, and then the cyclic calcification treatment was performed to induce precipitation of hydroxiapatite by improvement of the bioactivity. The corrosion resistance test, wettability test and immersion test in simulated body solution were conducted to investigate the effect of these surface treatments. The nanotubes formed by the anodization treatment have a dense structure in which small diameter tubes are formed between relatively large diameter tubes, and their inside was hollow and the outer walls were coupled to each other. The hydroxyapatite precipitates were well combined on the nanotubes by the penetration into the nanotube layer by successive cyclic calcification treatment, and the precipitation of hydroxyapatite tended to increase proportionally after immersion in simulated body solution as the number of cycles increased. In conclusion, it was confirmed that induction of precipitation of hydroxyapatite by cyclic calcification treatment after forming the nanotube TiO₂ nanotube layer on the surface of the titanium membrane can contribute to improvement of bioactivity.


Subject(s)
Corrosion , Durapatite , Immersion , Membranes , Nanotubes , Titanium , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL